Toric Self-dual Einstein Metrics as Quotients

نویسنده

  • CHARLES P. BOYER
چکیده

We use the quaternion Kähler reduction technique to study old and new selfdual Einstein metrics of negative scalar curvature with at least a two-dimensional isometry group, and relate the quotient construction to the hyperbolic eigenfunction Ansatz. We focus in particular on the (semi-)quaternion Kähler quotients of (semi-)quaternion Kähler hyperboloids, analysing the completeness and topology, and relating them to the self-dual Einstein Hermitian metrics of Apostolov–Gauduchon and Bryant.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Toric Anti-self-dual Einstein Metrics via Complex Geometry

Using the twistor correspondence, we give a classification of toric anti-self-dual Einstein metrics: each such metric is essentially determined by an odd holomorphic function. This explains how the Einstein metrics fit into the classification of general toric anti-self-dual metrics given in an earlier paper [7]. The results complement the work of Calderbank–Pedersen [6], who describe where the ...

متن کامل

Self-dual metrics on toric 4-manifolds: Extending the Joyce construction

Toric geometry studies manifolds M2n acted on effectively by a torus of half their dimension, T . Joyce shows that for such a 4-manifold sufficient conditions for a conformal class of metrics on the free part of the action to be self-dual can be given by a pair of linear ODEs and gives criteria for a metric in this class to extend to the degenerate orbits. Joyce and Calderbank-Pedersen use this...

متن کامل

Toric Geometry, Sasaki–Einstein Manifolds and a New Infinite Class of AdS/CFT Duals

Recently an infinite family of explicit Sasaki–Einstein metrics Y p,q on S2 × S3 has been discovered, where p and q are two coprime positive integers, with q < p. These give rise to a corresponding family of Calabi–Yau cones, which moreover are toric. Aided by several recent results in toric geometry, we show that these are Kähler quotients C4//U(1), namely the vacua of gauged linear sigma mode...

متن کامل

Self Dual Einstein Orbifolds with Few Symmetries as Quaternion Kähler Quotients

We construct a new family of compact orbifolds O(Θ) with a positive self dual Einstein metric and a one-dimensional group of isometries. Together with another family, introduced in [6] and here denoted by O(Ω), these examples classify all 4-dimensional orbifolds that are quaternion Kähler quotients by a torus of real Grassmannians.

متن کامل

Stony Brook University

of the Dissertation Self-Dual Metrics on 4-Manifolds by Mustafa Kalafat Doctor of Philosophy in Mathematics Stony Brook University 2007 Under a vanishing hypothesis, Donaldson and Friedman proved that the connected sum of two self-dual Riemannian 4-Manifolds is again self-dual. Here we prove that the same result can be extended over to the positive scalar curvature case. Secondly we give an exa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008